

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Germany, Bulgaria,

Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain,

Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia under grant

agreement No 101101903.

SLURM Best Practice Guide

for HPC Users

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Germany, Bulgaria,

Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain,

Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia under grant

agreement No 101101903.

Content
1.- INTRODUCTION .. 3

2.- BASIC CONCEPTS ... 4

a) Computation nodes ..4

b) Partitions ...4

c) Most common SLURM commands ...4

3.- USE OF USEFUL COMMANDS IN SLURM ... 6

a) Finding information in the work queue with squeue .. 6

b) Status of work ... 7

d) Stopping work with scancel ... 8

e) Status information with sstat ... 8

f) Formatting the sstat output ... 8

g) Analysing finished works with sacct .. 9

h) Formatting the sacct output .. 10

i) Control of queued and running jobs through scontrol .. 12

j) Streaming output to a text file ... 12

k) Channel the output to Grep and find lines containing the word "Time". 13

4.- TIPS ... 13

 Tip: Resources .. 15

 Tip: Wall time .. 15

 Tip: Memory (RAM) ... 15

 Tip: Parallelism ... 16

5.- BEST PRACTICES FOR LARGE NUMBERS OF JOBS .. 16

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Germany, Bulgaria,

Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain,

Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia under grant

agreement No 101101903.

1.- INTRODUCTION1

Slurm (Simple Linux Utility for Resource Management) is one of the most widely used

task management systems in computer clusters.

It has three main functions:

1. Resource allocation: allocates users access to resources (compute nodes) to users

for a given period of time so that they can perform their work.

2. Work initiation and monitoring: provides a framework for initiating, executing and

monitoring work on the set of allocated nodes.

3. Resource arbitration: arbitrarily allocates resources by managing a queue of

pending work.

Slurm is an open source, fault-tolerant job scheduling and cluster management

framework that requires no kernel modifications to operate. It is widely used in

supercomputers and clusters, and more specifically it is used by some of NCC Spain's

partners.

Therefore, at NCC Spain, we consider it of great interest for users requesting access

to our HPC resources, either through the EuroCC Spain Testbed or other means, to

know and know how to use it, and to have at their disposal a series of good practices

and/or tips that can facilitate its use. For this reason, a series of recommendations

and commands that may be useful have been compiled in this document

Slurm is written in C language and uses a GNU autoconf configuration engine.

Although initially written for Linux, other UNIX-like operating systems should be easy

targets for porting. The code should adhere to the Linux kernel coding style.

Architecture

Slurm consists of a slurmd daemon running on each compute node and a central

slurmctld daemon running on a management node (with optional failover twin).

The slurmd daemons provide hierarchical error-tolerant communications.

The entities managed by these Slurm daemons include nodes, the Slurm computing

resource, partitions, which group nodes into (possibly overlapping) logical sets, jobs

or resource allocations assigned to a user for a specified amount of time, and job

steps, which are sets of (possibly parallel) tasks within a job. Partitions can be

considered as queues of jobs, each of which has a variety of constraints such as job

size limit, job time limit, users authorised to use it, etc. Priority-ordered jobs are assigned

nodes within a partition until the resources (nodes, processors, memory, etc.) within

that partition are exhausted. Once a job is assigned a set of nodes, the user can start

a parallel job in the form of job steps in any configuration within the assignment. For

1 Source: Slurm Workload Manager - Descripción general (schedmd.com)

https://slurm.schedmd.com/overview.html

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Germany, Bulgaria,

Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain,

Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia under grant

agreement No 101101903.

example, a single job step can be initiated that uses all nodes assigned to the job, or

multiple job steps can independently use a portion of the assignment.

2.- BASIC CONCEPTS i

The most important concepts within slurm are:

• Computation nodes.

• Partitions.

• Jobs.

• Tasks that represent a process within a job.

a) Computation nodes

It is from the login nodes that the user interacts with Slurm and from where he

launches and monitors his jobs. From here, the user accesses his data and the results

of the executions.

b) Partitions

Partitions are a mechanism for logically grouping nodes, each of which can have a

variety of constraints such as job size limit, job time limit, users authorised to use it, etc.

As jobs are launched in a particular partition, they are ordered by priority within a

partition until the resources (nodes, processors, memory, etc.) within that partition are

exhausted and can be left waiting.

 c) Most common SLURM commands
To familiarise yourself with the task manager, the most common slurm commands are

listed. To learn more about the command as options you can run:

man <command>

<command> --help

• sbatch <script file>: launch a script to the queue manager.

Used to submit a job script for further execution. Typically, the script will

contain one or more execution commands to initiate parallel tasks.

• squeue: to check the status of work in the queues.

Reports the status of jobs. It has a wide variety of filtering, sorting and

formatting options. By default, it reports running jobs in order of priority and

then pending jobs.

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Germany, Bulgaria,

Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain,

Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia under grant

agreement No 101101903.

• scancel <job_id list>: to cancel a job.

It is used to cancel a or execute the job or job step. It can also be used to

send an arbitrary signal to all processes associated with a running job or

job step.

• scontrol show job <job_id>: to obtain information on the status of a job.

This is the administrative tool used to view and/or modify the status of

Slurm.

• sinfo: to view the status of the system queues.

Reports the status of partitions and nodes managed by Slurm. Has a wide

variety of filtering, sorting and formatting options.

• salloc <opcions>: to log in interactively (get a node to run).

Used to allocate resources to a real-time job. Typically, this is used to

allocate resources and generate a shell, i.e. run an interactive session.

• srun <aplicacion>: to submit a job for execution or initiate job steps in real

time.

SRUN has a wide variety of options for specifying resource requirements,

including: minimum and maximum number of nodes, number of

processors, specific nodes to be used or not, and specific node

characteristics (memory, disk space, features, etc.). A job may contain

several job steps that are executed sequentially or in parallel on

independent or shared resources within the job's node allocation.

• sacct: to consult the accounting of one's own account.

It is used to report information on active or completed jobs.

• sstat: obtain information on the resources used by a work in progress.

It is used to obtain information about the resources used by a running job

or a work step.

• Sview: is a graphical user interface for obtaining and updating status

information of jobs, partitions and nodes managed by Slurm.

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Germany, Bulgaria,

Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain,

Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia under grant

agreement No 101101903.

3.- USE OF USEFUL COMMANDS IN SLURM 2

Slurm provides a variety of tools that allow the user to manage and understand their

jobs. This section will introduce these tools and provide details on how to use them.

a) Finding information in the work queue with squeue

The squeue command is a tool used to obtain information about the jobs in the

queue. By default, the squeue command will print the job ID, partition, job name, job

user, job status, job running time, number of nodes, and list of assigned nodes:

squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

111111 batch my_job myuser R 1:21:59 1 node0101-1

We can generate unabbreviated information with the --long flag. This flag will print

the default unabbreviated information with the addition of a time limit field.

squeue -l

squeue --long

The squeue command also gives users a means to calculate the estimated start time

of a job by adding the --start flag to our command. This will add Slurm's estimated

start time for each job to our output data.

squeue --user=username --start

Note

The start time provided by this command may be inaccurate. This is because the

calculated time is based on the jobs queued or running on the system. If a job with a

higher priority is queued after executing the command, your job may be delayed.

When checking the status of a job, you may want to repeatedly call the squeue

command to check for updates. We can accomplish this by adding the --iterate flag

to our squeue command. This will execute squeue every n seconds, allowing for

frequent and continuous updating of queue information without the need to

repeatedly call squeue:

squeue --start --iterate=n_seconds

2 Source: https://doc.hpc.iter.es/2023.03/slurm/how_to_slurm_useful_commands/

https://doc.hpc.iter.es/2023.03/slurm/how_to_slurm_useful_commands/

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Germany, Bulgaria,

Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain,

Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia under grant

agreement No 101101903.

Press ctrl-c to stop the command loop and return to the terminal.

b) Status of work

Once a job has been submitted to a job queue, the execution will follow these states:

• PENDING or PD: the job has entered the queue but the requested

resources are not yet available for it to start working, i.e. there are no free

nodes.

• RUNNING or R: the work is running in the queue with the resources that

have been requested.

• COMPLETED or CD: the job has been executed correctly, or at least what

has been specified in the launch script.

• COMPLETING or CG: the work is in the process of being completed in a

good state.

• SUSPEND or S: implementation of the work has been suspended and the

resources used have been released for other work.

• CANCELLED or CA: the job has been cancelled either by the user or by

the system administrators.

• FAILED or F: the execution of the work has failed.

• NODE_FAIL or NF: an error occurred with the node and the job could not

be launched. By default, Slurm relaunches the job again.

c) Reasons for a job being in PENDING

When a job is in the PENDING status, the reason why it is pending to execute is added

and can be:

• (Resources): the job is waiting until the requested resources are available.

• (Dependency): the job is dependent on another job and, therefore, it will

not start executing until the condition established for the dependency is

fulfilled.

• (DependencyNeverSatisfied): The job is waiting for a dependency that

has not been fulfilled. The job will stay in this state forever, therefore, the

job must be cancelled.

• (AssocGrpCpuLimit): The job cannot be executed because the allocated

CPU quota has been consumed.

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Germany, Bulgaria,

Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain,

Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia under grant

agreement No 101101903.

• (AssocGrpJobsLimit): The job cannot be executed because the limit of

concurrent jobs that the user or account is allowed to execute has been

reached.

• (ReqNodeNotAvail): The specified node is not available. It may be in use,

it may be reserved, or it may be marked as "out of service".

Info

For more information on squeue, visit the Slurm page on squeue.

d) Stopping work with scancel

Occasionally, you may need to stop a job completely while it is running. The best way

to accomplish this is with the scancel command. This command allows you to cancel

jobs that are running on Research Computing resources using the job ID. The

command looks like this:

scancel your_job-id

To cancel multiple jobs, you can use a comma-separated list of job IDs:

scancel your_job-id1, your_job-id2, your_jobiid3

Info

For more information on squeue, visit the Slurm page on squeue.

e) Status information with sstat

The sstat command allows users to easily obtain information about the status of their

currently running jobs. This includes CPU usage information, task information, node

information, resident set size (RSS) and virtual memory (VM). We can invoke the sstat

command as such:

sstat --jobs=your_job-id

f) Formatting the sstat output

By default, sstat will extract much more information than would be needed in the

default output of commands. To remedy this, we can use the --format flag to choose

what we want in our output. The format flag takes a comma-separated list of

variables that specify the output data:

sstat --jobs=your_job-id --format=var_1,var_2, ... , var_N

https://slurm.schedmd.com/squeue.html
https://slurm.schedmd.com/squeue.html

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Germany, Bulgaria,

Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain,

Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia under grant

agreement No 101101903.

Some of these variables may include:

Variable Description

avecpu Average CPU time of all tasks in the job.

averss Average size of the resident set of all tasks.

avevmsize Average virtual memory of all tasks in a job.

jobid Job ID.

maxrss Maximum number of bytes read by all tasks in the job.

maxvsize Maximum number of bytes written by all tasks in the job.

ntasks Number of tasks in a job.

For example, print the average job ID of a job, the CPU time, the maximum rss and

the number of tasks. We can do this by typing the command:

sstat --jobs=your_job-id --format=jobid,cputime,maxrss,ntasks

Info

A complete list of variables specifying data handled by sstat can be found with the

--helpformat flag or by visiting the slurm page at sstat.

g) Analysing finished works with sacct

The sacct command allows users to obtain information about the status of

completed jobs. This command is very similar to sstat, but is used on jobs that were

previously run on the system instead of jobs that are currently running. We can use

the job ID.

• For all work carried out:

sacct

https://slurm.schedmd.com/sstat.html

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Germany, Bulgaria,

Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain,

Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia under grant

agreement No 101101903.

• For a single job, identified by its ID:

sacct --jobs=your_job_id

By default, sacct will only pull jobs that have run on the current day. We can use the

--starttime flag to tell the command to look beyond its cache of short-term jobs.

sacct –-jobs=your_job-id –-starttime=YYYY-MM-DD

To see an unabbreviated version of the sacct output, use the --long flag:

sacct –-jobs=your_job-id –-starttime=YYYY-MM-DD --long

h) Formatting the sacct output

Like sstat, the standard output may not provide the information we want. To remedy

this, we can use the --format flag to choose what we want in our output. Similarly, the

format flag is driven by a comma-separated list of variables that specify the output

data:

sacct --user=your_rc-username --format=var_1,var_2, ... ,var_N

A list of some variables is provided below:

Variable Description

account Account on which the work was executed.

avecpu Average CPU time of all tasks in the job.

averss Average resident set size of all tasks in the job.

cputime Elapsed CPU time used by a job or step.

elapsed Elapsed time of jobs with format DD-HH:MM:SS

exitcode The output code returned by the job script or salloc.

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Germany, Bulgaria,

Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain,

Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia under grant

agreement No 101101903.

Variable Description

jobid Job ID.

jobname Name of the work.

maxdiskread Maximum number of bytes read by all tasks.

maxdiskwrite Maximum number of bytes writte by all tasks

maxrss The output code returned by the job script or salloc.

ncpus Number of allocated CPUs.

nnodes Number of nodes used.

ntasks Number of tasks in a job.

priority Slurm priority.

qos Quality of service.

reqcpu Number of CPUs ordered

reqmem Amount of memory required for a job

user User name of the person who carried out the work.

For example, suppose you want to find information about jobs that ran on 12 March

2018. You want to display information about the job name, the number of nodes used

in the job, the amount of CPU, the maxrss, and the elapsed time. Your command

would look like this:

sacct --starttime=2018-03-12 --format=jobname,nnodes,ncpus,maxrss,elapsed

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Germany, Bulgaria,

Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain,

Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia under grant

agreement No 101101903.

Info:

A complete list of variables specifying data handled by sacct can be found with the

--helpformat flag or by visiting the slurm page at sacct.

i) Control of queued and running jobs through scontrol

The scontrol command gives users greater control over their jobs running through

Slurm. This includes actions such as suspending a job, stopping the execution of a job,

or extracting detailed information about the status of jobs.

To suspend a job that is currently running on the system, we can use scontrol with the

suspend command. This will stop a running job at its current step which can be

resumed at a later time. We can suspend a job by typing the command:

scontrol suspend job_id

To resume a paused job, we use scontrol with the resume command.

scontrol resume job_id

Slurm also provides a utility to hold jobs that are queued in the system. Holding a job

will place the job at the lowest priority, effectively "holding" the job from running. A

job can only be held if it is waiting for the system to run. We use the hold command

to place a job in a waiting state:

scontrol hold job_id

We can then release a held job using the release command:

scontrol release job_id

scontrol can also provide job information via the show job command. The

information provided by this command is quite extensive and detailed, so be sure to

clear your terminal window, collect some information from the command, or pipe

the output to a separate text file:

scontrol show job job_id

j) Streaming output to a text file

scontrol show job job_id > outputfile.txt

https://slurm.schedmd.com/scancel.html

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Germany, Bulgaria,

Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain,

Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia under grant

agreement No 101101903.

k) Channel the output to Grep and find lines containing the word "Time".

scontrol show job job_id | grep Time

4.- TIPS3

 Tip: Using modules in a script

In order to be able to use the modules environment, it is necessary to source the

modules profile file. To do this, the following line must be added to the submit scripts

before using any module command:

source /etc/profile.d/profile.modules.sh

 Tip: Reserve complete compute nodes

On compute nodes, it is recommended to reserve complete nodes using the -N

<nodes> option, so that other users' executions do not interfere with each other.

Remember that the billing of these nodes is per node usage.

 Tip: Submit a job with sbatch

It is advisable to submit the job via sbatch as well as using the modifiers -D <directory>

and -t <time>.

-t <time> or its equivalent #SBATCH --t <days-HH:MM>.

-D <directory> or its equivalent #SBATCH --D <directory>.

 Tip: Number of tasks per node

It is possible to run without using all the available cores on the node. To do this, just

request the number of nodes with -N X and the number of processes to run on each

node with --tasks-per-node:srun -N 4 --tasks-per-node=8 <software>

#SBATCH --N 4

#SBATCH --tasks-per-node=8

3 Source: Consejos de uso - TeideHPC (iter.es)

https://doc.hpc.iter.es/2023.03/slurm/how_to_usage_tips/

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Germany, Bulgaria,

Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain,

Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia under grant

agreement No 101101903.

 Tip: Notifications from the slurm job manager

It is possible to manage the automatic notification of certain job events with the

following policies.

#SBATCH --mail-user=EMAIL # Event notification email

#SBATCH --mail-type=EVENT1, EVENT2,... # Reportable events

Clarification on Slurm's mail events:

Slurm can send mails to the specified address about a number of events that happen

to the job. Such events can be:

- BEGIN: when the work goes into execution.

- END: when the execution of the work is completed.

- FAIL: when the execution of the work fails.

- TIME_LIMIT: when the work reaches the maximum execution time.

- TIME_LIMIT_50: when the work has reached 50% of the time limit.

- TIME_LIMIT_80:. when the work has reached 80% of the time limit

- TIME_LIMIT_90: when the work has reached 90% of the time limit.

- ARRAY_TASKS: sends an email notification for each job in the array. If, when using

arrays, this option is not specified, an email will be sent as if it were a single job.

- ALL: all types of events.

Of all the possible events, it is recommended to use the ones related to the allowed

time limit consumption, TIME_LIMIT_50, TIME_LIMIT_80 and TIME_LIMIT_90. In this way,

the user is aware of the time remaining for the job and, if necessary, can send an

email to the administrators in time to extend the execution time of the job.

 Tip: Bash header

We recommend using #!/bin/bash -e instead of simple #!/bin/bash, so that failure of

any command within the script causes your job to stop immediately instead of trying

to continue with an unexpected environment or erroneous intermediate data. It also

ensures that your failed jobs show a FAILED status in the sacct output.

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Germany, Bulgaria,

Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain,

Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia under grant

agreement No 101101903.

 Tip: Resources

Do not request more resources (CPU, memory, GPU) than you will need. In addition

to using your core hours faster, resource-intensive jobs will take longer to queue. Use

the information provided at the end of your job (e.g. via the sacct command) to

better define your resource requirements.

 Tip: Wall time

Long jobs will spend more time in the queue, as there are more opportunities for the

scheduler to find a time slot to run shorter jobs. Therefore, consider using job

checkpoints or, where possible, more parallelism, to reduce the duration of jobs to a

few hours or, in the worst case, days.

Leave some margin for safety and variability between runs in the system, but try to

be as accurate as possible.

If you have many jobs of less than 5 minutes, then they should probably be combined

into larger jobs using a simple loop in the batch script to amortise the overhead of

each job (start-up, accounting, etc.).

 Tip: Memory (RAM)

If you request more memory (RAM) than you need for your job, you will wait longer in

the queue and it will be more expensive when it runs. On the other hand, if you do

not request enough memory, the job may be cancelled for trying to exceed the

allocated memory limits.

We recommend that you request a little more RAM, but not much more, than your

program will need at its maximum usage.

We also recommend using --memen instead of --mem-per-cpu in most cases. There

are a few types of jobs for which --mem-per-cpu is more suitable

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Germany, Bulgaria,

Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain,

Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia under grant

agreement No 101101903.

 Tip: Parallelism

In general, only MPI jobs should set ntasks greater than 1 or use srun. If you don't know

if your program supports MPI, it probably does not.

Only multiprocess jobs should set cpus-per-task . If you don't know if your program

supports multi-threading, try benchmarking with 2 CPUs and with 4 CPUs and see if

there is a two-fold difference in elapsed job time.

Job arrays are an efficient mechanism for managing a collection of batch jobs with

identical resource requirements. Most Slurm commands can handle job arrays either

as individual items (tasks) or as a single entity (e.g., delete an entire job array in a

single command).

5.- BEST PRACTICES FOR LARGE NUMBERS OF JOBS

Consider placing related work in a single Slurm job with multiple jobs, both for

performance reasons and for ease of management. Each Slurm job can contain a

multitude of job steps and the overhead in Slurm to manage the job steps is much

less than that of individual jobs.

Job arrays are an efficient mechanism for managing a collection of batch jobs with

identical resource requirements. Most Slurm commands can manage job arrays as

individual elements (tasks) or as a single entity (e.g., delete an entire job array in a

single command).

MPI

The use of MPI depends on the type of MPI being used. Three fundamentally different

modes of operation are used by these various MPI implementations.

1. Slurm directly initiates tasks and performs communication initialisation via the

PMI2 or PMIx APIs. (Supported by most modern MPI implementations).

2. Slurm creates a resource allocation for the job, and then mpirun launches tasks

using the Slurm infrastructure (older versions of OpenMPI).

3. Slurm creates a resource allocation for the job, and then mpirun launches tasks

using some mechanism other than Slurm, such as SSH or RSH. These tasks are

started outside of Slurm's supervision or control. Slurm's epilogue should be

configured to purge these tasks when the job assignment is relinquished. The use

of pam_slurm_adopt is also recommended.

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Germany, Bulgaria,

Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain,

Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia under grant

agreement No 101101903.

OPENMPii

Open MP (Open Multi-Processing) is an application programming interface (API) that

enables parallel programming on shared-memory systems. OpenMP has become a

standard for parallel programming on shared-memory systems and is compatible

with several programming languages, such as C, C++, and Fortran.

OpenMP is characterised by being easy to learn, flexible and portable. The source

code of an application can be adapted to different systems without having to

modify the original source code. In addition, OpenMP offers a wide variety of

directives for threading, synchronisation and job allocation.

OpenMP Directives

OpenMP directives are keywords used in the source code to tell the application

which sections of the code should be executed in parallel. OpenMP directives are

also used to specify thread creation and synchronisation.

Some of the most commonly used OpenMP directives:

• parallel: this directive creates a parallel region where work is divided among

multiple threads. Each thread executes a copy of the parallel region and then

they are joined at the end.

• for: used to parallelise loops. It divides the work of the loop among the

available threads, where each thread executes a portion of the loop.

• sections: used to parallelise independent sections of code. Each section runs

on a separate thread.

• single: with the single directive, a section of code runs on only one thread. It

can be used for initialisations or to perform one-time operations.

• task: Used to create independent tasks that can be executed by available

threads. It provides a more flexible execution model than the for and sections

directives.

• critical: used to define a critical section of code, where only one thread can

execute it at a time. It is used to protect sections of code that access shared

resources.

• atomic: used to perform atomic operations on shared variables. It ensures that

the operation is performed without interference from other threads.

• barrier: used to synchronise all threads at a specific point in the program.

Threads will wait until all other threads reach the same point before continuing.

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Germany, Bulgaria,

Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain,

Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia under grant

agreement No 101101903.

FOR MORE INFORMATION YOU CAN ALSO CONSULT:

QUICK USER GUIDE: https://slurm.schedmd.com/quickstart.html

VIDEO TUTORIALS: https://www.schedmd.com/publications/

i Source: Cómo iniciar sesión en TeideHPC - TeideHPC (iter.es)
ii Source: https://medium.com/@leonardoaguirre_97179/openmp-y-la-programaci%C3%B3n-paralela-
8990f14b95f3

https://slurm.schedmd.com/quickstart.html
https://www.schedmd.com/publications/
https://doc.hpc.iter.es/2023.03/user_guides/how_to_login/
https://medium.com/@leonardoaguirre_97179/openmp-y-la-programaci%C3%B3n-paralela-8990f14b95f3
https://medium.com/@leonardoaguirre_97179/openmp-y-la-programaci%C3%B3n-paralela-8990f14b95f3

